Site icon AstronautiNEWS

Diretta verso la ISS la missione CRS-23

Oggi 29 agosto, alle 09:14 italiane (le 07:14 UTC), SpaceX ha lanciato con successo la missione Dragon SpX-23 a bordo di un Falcon 9. Il vettore è decollato dal Launch Complex 39A del Kennedy Space Center, in Florida, negli Stati Uniti. Si è trattato del volo numero 132 partito da questa rampa, il sessantottesimo per un Falcon 9 Block 5 e il quarto per B1061, che ha servito le missioni Crew-1, Crew-2 e SXM-8.

Di seguito è disponibile il replay della diretta con il commento degli ingegneri di SpaceX e di seguito quella del controllo missione.

Profilo di missione

Il lancio, originariamente previsto per il 28 agosto alle 09:37, è stato rimandato a causa del meteo sfavorevole e ripianificato per il giorno successivo. Il primo stadio, dopo aver spinto il secondo stadio e la capsula per circa due minuti e mezzo, si è separato e ha effettuato il suo quarto atterraggio complessivo, il primo sulla nuova chiatta A Shortfall Of Gravitas (ASOG), entrata in servizio dopo il ricollocamento sulla costa occidentale di Of Course I Still Love You (OCISLY), che verrà utilizzata per il recupero dei booster impegnati nel lancio della prossima generazione di satelliti Starlink da Vandenberg.

L’attracco automatico è previsto per le 17:00 del 30 agosto e avverrà sul portellone frontale del modulo Harmony (prima Cargo Dragon V2 ad attraccarvi). Gli astronauti NASA Megan McArthur e Shane Kimbrough monitoreranno le operazioni, intervenendo in caso di problemi. La Dragon rimarrà ancorata al laboratorio orbitante per circa un mese e al ritorno ammarerà nelle acque della Florida, riportando a terra carichi ed esperimenti scientifici per una rapida analisi.

Carico scientifico e hardware

La capsula, seriale C208, già utilizzata per la missione CRS-21, porterà 2.207 kg di materiale alla ISS, di cui 480 kg di provviste per l’equipaggio, 1.046 kg di materiale per ricerche scientifiche, 69 kg di equipaggiamento per le attività extraveicolari, 338 kg di hardware per i veicoli e 24 kg di hardware russo.

Rappresentazione grafica del carico a bordo di Dragon. Credits: NASA

Esperimenti scientifici

2 / 7

Hardware inviato

Tra i 338 kg di hardware che verranno inviati figurano:

CubeSat

A bordo ci saranno anche tre cubesat, lanciati nell’ambito dell’Educational Launch of Nanosatellites (ELaNa), e costruiti da altrettante università americane: l’Università Interamericana di Porto Rico, l’Università dell’Illinois a Urbana-Champaign e l’Università del Massachusetts a Lowell.

Il Puerto Rico CubeSat NanoRocks-2 (PR-CuNaR2) è stato il primo cubesat del territorio non incorporato a essere selezionato per il lancio da NASA e contiene delle minuscole particelle che saranno meccanicamente scosse per indurre collisioni tra loro. Lo studio mira a capire come massa, densità, composizione e velocità di collisione delle particelle contribuiscano alla formazione dei dischi protoplanetari (dischi di gas e polvere in rotazione nelle prime fasi di vita di un sistema solare) e nei sistemi di anelli.

Il Science Program Around Communication Engineering with High Achieving Undergraduate Cadres (SPACE HAUC) ha l’obiettivo di dimostrare un sistema di comunicazione sviluppato da studenti per trasferire rapidamente grandi quantità di dati. La velocità raggiunta, circa 50 Mb/s, è di 10 volte maggiore rispetto a quella dei CubeSat tradizionali ed è possibile grazie all’utilizzo di un’antenna phased array in banda X.

Per concludere, il Cool Annealing Payload Satellite (CAPSat) è stato sviluppato in vari dipartimenti dell’Università dell’Illinois ad Urbana-Champaign in cooperazione con l’Università di Waterloo, in Ontario, Canada. CAPSat testerà una tecnologia che permetterà di utilizzare collegamenti quantistici nello spazio, fondamentali per la rete quantistica che verrà sviluppata nei prossimi anni. La dimostrazione sfrutterà una laser per riparare un detector di fotoni che rilevano i segnali quantistici: i detector, a causa della radiazione, diventano imprecisi e “rumorosi”, per cui l’eccitazione degli atomi e il loro successivo riposizionamento a causa dell’interazione con il laser ripara il detector, riportandolo alle condizioni originarie.

Fonti: NASA, NASA – APEX-08, CCP Blog, KSC News.

Le immagini sono tratte dall’album dedicato di NASA.

  Questo articolo è copyright dell'Associazione ISAA 2006-2024, ove non diversamente indicato. - Consulta la licenza. La nostra licenza non si applica agli eventuali contenuti di terze parti presenti in questo articolo, che rimangono soggetti alle condizioni del rispettivo detentore dei diritti.

Commenti

Discutiamone su ForumAstronautico.it
Exit mobile version